Organizations run their day-in-and-day-out businesses with transactional applications and databases. On the other hand, organizations glean insights and make critical decisions using analytical databases and business intelligence tools.
The transactional workloads are relegated to database engines designed and tuned for transactional high throughput. Meanwhile, the big data generated by all the transactions require analytics platforms to load, store, and analyze volumes of data at high speed, providing timely insights to businesses.
Thus, in conventional information architectures, this requires two different database architectures and platforms: online transactional processing (OLTP) platforms to handle transactional workloads and online analytical processing (OLAP) engines to perform analytics and reporting.
Today, a particular focus and interest of operational analytics includes streaming data ingest and analysis in real time. Some refer to operational analytics as hybrid transaction/analytical processing (HTAP), translytical, or hybrid operational analytic processing (HOAP). We’ll address if this model is a way to create efficiencies in our environments.